Specificity of transposon Tn5 insertion.

نویسندگان

  • D E Berg
  • M A Schmandt
  • J B Lowe
چکیده

Genetic mapping studies had shown that the bacterial transposon Tn5 can insert into many sites in a gene, but that some sites are preferred. To begin understanding Tn5's insertion specificity at the molecular level, we selected transpositions of Tn5 from the Escherichia coli chromosome to the plasmid pBR322 and analyzed the resultant pBR322::Tn5 plasmids by restriction endonuclease digestion and DNA sequencing. Seventy-five insertions in the tet gene were found at 28 sites including one major hotspot (with 21 insertions) and four lesser hotspots (with four to ten insertions each). All five hotspots are within the first 300 of the 1250-base pair (bp) tet gene. In contrast, 31 independent insertions in the amp gene were found in at least 27 distinct sites.--Tn5 generates 9 bp target sequence duplications when it transposes. Such transposon-induced duplications are generally taken to indicate that cleavages of complementary target DNA strands are made 9 bp apart during transposition. DNA sequence analysis indicated that GC base pairs occupy positions 1 and 9 in the duplications at each of the five hotspots examined, suggesting a GC-cutting preference during Tn5 transposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transposon mutagenesis of the anaerobic commensal, Bacteroides fragilis, using the EZ::TN5 transposome.

Genetic analysis of Bacteroides fragilis (BF) is hindered because of the lack of efficient transposon mutagenesis methods. Here, we describe a simple method for transposon mutagenesis using EZ::TN5, a commercially available system that we optimized for use in BF638R. The modified EZ::TN5 transposon contains an Escherichia coli conditional origin of replication, a kanamycin resistance gene for E...

متن کامل

Transposon Tn5 target specificity: preference for insertion at G/C pairs.

The procaryotic transposon Tn5 inserts into many different sites within a single gene, but some sites (hotspots) are targeted repeatedly. Hotspots are not closely related in sequence, but most have G/C pairs at the ends of the nine base pairs duplicated by Tn5 insertion. In pBR322, the major hotspot coincides with the "-10 region" of the tet promoter. We mutated the G/C pairs at this hotspot an...

متن کامل

Construction of a correlated physical and genetic map of the Klebsiella pneumoniae hisDGO region using transposon Tn5 mutagenesis.

Multicopy plasmids containing the hisDG region of Klebsiella pneumoniae were mutagenized with transposon Tn5. The resulting plasmids were examined for their ability to complement hisD and hisG mutations in Escherichia coli. The physical location of Tn5 on each of the hisD::Tn5 and hisG::Tn5 plasmids was determined by restriction endonuclease analysis. By combining the two types of data, a preci...

متن کامل

Construction of Rhodococcus random mutagenesis libraries using Tn5 transposition complexes.

The ability to generate tagged mutants of Rhodococcus spp. will facilitate a deeper understanding of this medically and commercially important genus. The absence of efficient transposon systems in these organisms has here been overcome by the use of Tn5-based DNA-protein transposition complexes which can transpose at high efficiency. To achieve this, electroporation efficiencies and antibiotic ...

متن کامل

Tn 5 y IS 50 target recognition ( Escherichia coli y composite transposons y insertion specificity ) IGOR

This communication reports an analysis of Tn5yIS50 target site selection by using an extensive collection of Tn5 and IS50 insertions in two relatively small regions of DNA (less than 1 kb each). For both regions data were collected resulting from in vitro and in vivo transposition events. Since the data sets are consistent and transposase was the only protein present in vitro, this demonstrates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 105 4  شماره 

صفحات  -

تاریخ انتشار 1983